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Abstract 
 

Over 350 000 compounds are registered for production and use including a high number of congeners 
found in complex chemical mixtures (CCMs). With such a high number of chemicals being released in 
the environment and degraded into transformation products (TPs), the challenge of identifying 
contaminants by non-targeted screening (NTS) is massive. "Bottom-up" studies, where compounds are 
subjected to conditions simulating environmental degradation to identify new TPs, are time consuming 
and cannot be relied upon to study the TPs of hundreds of thousands of compounds. Therefore, the 
development of "top-down" workflows, where the structural elucidation of unknown compounds is 
carried directly on the sample, is of interest. 

In this study, a top-down NTS workflow was developed using molecular networking and clustering 
(MNC). A total of 438 compounds were identified including 176 congeners of consumer product additives 
and 106 TPs. Reference standards were used to confirm the identification of 53 contaminants among them 
lesser-known pharmaceuticals (aliskiren, sitagliptin) and consumer product additives (lauramidopropyl 
betaine, 2,2,4-trimethyl-1,2-dihydroquinoline). The MNC tools allowed to group similar TPs and 
congeners together. As such, several previously unknown TPs of pesticides (metolachlor) and 
pharmaceuticals (gliclazide, irbesartan) were identified as tentative candidates or probable structures. 
Moreover, some congeners that had no entry on global repositories (PubChem, ChemSpider) were 
identified as probable structures. The workflow worked efficiently with oligomers containing ethylene 
oxide moieties, and with TPs structurally related to their parent compounds.  

The top-down approach shown in this study addresses several issues with the identification of congeners 
of industrial compounds from CCMs. Furthermore, it allows elucidating the structure of TPs directly from 
samples without relying on bottom-up studies under conditions discussed herein. The top-down workflow 
and the MNC tools show great potential for data mining and retrospective analysis of previous NTS 
studies.  

 

 

 

 

 

 

 

 

 

 

 

  



1. Introduction 
 

Nowadays, over 350 000 compounds are registered for production and use and thus potentially released 
in environmental compartments (Wang et al., 2020). The study of human-made complex chemical 
mixtures (CCMs) is of interest to identify drivers of toxicity in surface waters (Altenburger et al., 2019). 
Rather than specific individual molecules, CCMs are often composed of multiple congeners of molecules 
of the same family. These mixtures are often ambiguous in their description or sometimes even 
confidential (Wang et al., 2020). Furthermore, these already ill-known molecules that make up CCMs are 
likely transformed through photolysis or biological processes. The resulting transformation products 
(TPs) constitute yet another layer of uncertainty. These CCMs and their TPs can then be accompanied by 
natural organic matter in surface waters which further complexifies the study of their occurrence. There 
is thus a concerning lack of knowledge regarding the occurrence, fate, and toxicity of these numerous 
compounds in the different environmental compartments.  

Generally, the structural elucidation of unknown transformation products is carried out through “bottom-
up” workflows. In these approaches, priority contaminants, consumer product additives (CPAs) such as 
polymer additives and surfactants, pesticides, and pharmaceuticals are submitted to various degradation 
pathways after which their transformation products are identified. Then, the environmental occurrence of 
the transformation products can be confirmed. As an example, 2-pyrrolidone, the hydrolysis 
transformation product of vinylpyrrolidone, was identified after being generated in laboratory 
experiments and then confirmed in retrospective analysis to be a widespread contaminant (Zahn et al., 
2019). While “bottom-up” workflows allow to identify with high confidence unknown transformation 
products, it remains highly time- and resource-intensive. In the context hundreds of thousands of 
compounds being discharged in the environment and thousands of new ones being created each year, 
these “bottom-up” studies cannot keep up with the overwhelming burden of work that studying the fate 
and occurrence of all these compounds would entail. As such, only priority compounds like high 
production volume chemicals or with high concern for toxicity can realistically be selected in “bottom-
up” studies.  

However, there are online tools that can predict transformation products such as enviPath (Wicker et al., 
2016), BioTransformer (Djoumbou-Feunang et al., 2019), and the Chemical Transformation Simulator 
(U.S. Environmental Protection Agency, 2022). The generated transformation products can then be added 
to suspect lists for suspect screening (Hollender et al., 2017). This combinatorial “bottom-up” approach 
has been incorporated into suspect and non-targeted screening (NTS) workflows of surface water in 
Europe (Bletsou et al., 2015; Li et al., 2017). However, this can lead to the omission of potentially 
important transformation products and to a “combinatorial explosion” where too many predicted 
transformation products are generated through multiple simulated degradation processes (Zahn et al., 
2019).  

These issues are considerable challenges that the scientific community is facing when conducting the 
identification of transformation products and chemical congeners mixtures of CPAs by NTS. 
Nevertheless, there are tools and software available that can help resolve these issues. The Global Natural 
Products Social Molecular Networking (GNPS) is an open-access web-based platform that groups 
compounds that share similar mass spectra into molecular networks (Wang et al., 2016). GNPS has been 
widely used in the study of natural products (Hebra et al., 2020; Olivon et al., 2017) and in metabolomics 
(Ernst et al., 2019; Quinn et al., 2017; Sedio et al., 2018). Still, molecular networking has seen little use 
for non-targeted analysis of surface waters. In one instance it was used to identify an unknown 
transformation product of the pharmaceutical telmisartan in a NTS assay and it also helped to identify in 
batch congeners of octylphenol ethoxylate (Eysseric et al., 2021). In another NTS study, it was used to 
identify several TPs of pharmaceutical compounds (Oberleitner et al., 2021).  

There are other software and platforms that can help grouping compounds that share properties such as 
retention times and peak area. XCMS online (Gowda et al., 2014) and Compound Discoverer have been 



used in these purposes in metabolomics (Hemmer et al., 2020) using hierarchical clustering analysis. 
They, however, only use MS1 data. On the other hand, the open-source R package CluMSID generates 
distance matrixes for each precursor ion from MS2 data and can thus help toward the identification of 
similar compounds from their spectra (Depke et al., 2017; Depke et al., 2019). As such, CluMSID and the 
molecular networking from GNPS can be used to assist the identification of transformation products and 
congeners. Both tools can then be incorporated in NTS workflows after the high resolution MS2 spectra 
database search. Finally, the use of in-silico spectra matching algorithms such as MetFrag (Ruttkies et al., 
2016) and SPS (Sweeney, 2014) allows employing large libraries of compounds. Those approaches have 
been recently used in surface water analysis (Eysseric et al., 2021; Ferrer et al., 2020; Gago-Ferrero et al., 
2018; Lai et al., 2021).  

The development of “top-down” approaches, where the structural elucidation of previously unknown TPs 
and congeners from CCMs is carried directly on the sample, would help to considerably alleviate the 
burden on “bottom-up” approaches to identify new TPs. Furthermore, top-down workflows could partly 
address the concerning issue of identifying congeners of CPAs from CCMs without relying on suspect 
lists. 

The objective of this study was to evaluate the capacity of a “top-down” workflow to directly elucidate 
the structure of TPs and identify congeners of CPAs with a high level of confidence. To do so, NTS of 
water samples from a local river impacted with industrial, urban, and agricultural contamination sources 
was carried out. Then, molecular networking from GNPS and CluMSID were used to identify congeners 
and transformation products from CCMs. 

 

2. Materials and Methods 
2.1 Reagents and standards 
 

Water, acetonitrile (ACN), methanol (MeOH), and formic acid were all LC-MS Optima grade and were 
obtained from Fisher Scientific (Waltham, MA, USA). Information about standards is shown in the 
Supplementary Material. 

 

2.2 Collection and preparation of samples 
 

Water samples (1000 mL) were collected from the Yamaska River upstream and downstream the 
wastewater treatment plants of Cowansville, Farnham and Saint-Hyacinthe (QC, Canada) on July 11, 
2019; a satellite view the sampling points can be seen in Figure S-1 (Supplementary Material). Since the 
objective of this study was to evaluate the potential of the proposed top-down workflow to identify TPs 
and congeners of CPAs, representative sampling, which would have required a much larger sample size 
with multiple sampling replicates, was not necessary considering the scope of the article. Amber-coloured 
high-density polyethylene bottles were used for the sampling and kept in an ice cooler until arrival at the 
laboratory where they were immediately stored at -20°C. Prior to the extraction, the samples were thawed 
at room temperature, filtered through 1.2 µm glass fibre APFC prefilters and then through 0.45 µm mixed 
cellulose ester membranes, both from Millipore-Sigma (Oakville, ON, Canada). The samples were 
concentrated 250 mL on Strata-X polymer solid-phase extraction cartridges (200 mg, 6 mL) from 
Phenomenex (Torrance, CA, USA) and then eluted with 2 × 3 mL of a 1:1 (v/v) 2% formic acid solution 
of ACN-MeOH. The eluates were evaporated under a nitrogen stream and reconstituted to 625 µL, which 
amounts to a preconcentration factor of 400. While multi-layered SPE cartridges combining different 
sorbent chemistries have been used in the past (Gago-Ferrero et al., 2015; Köke et al., 2018; Moschet et 
al., 2013) and show high recoveries, especially for highly polar compounds, the Strata-X sorbent 
[poly(styrene-divinylbenzene) modified with N-vinylpyrrolidone] is able to obtain acceptable recoveries 



(>75%) for a wide range of compounds in surface waters (Segura et al., 2019). The steps involved in the 
sampling and the preparation of the samples can be seen in Figure S-2 (Supplementary Material).  

 

2.3 Quality control 
 

A composite field blank made in all sampling points was prepared with Optima LC-MS water at each 
station and an instrumental blank was prepared prior to the injection of the sequence. No isotopically 
labeled standards nor spikes were used in this study. The composite field blank and the instrumental 
blanks were analyzed at the beginning and the end of the sequence to account for potential carry over. 
Both blanks were used for background signal subtraction to filter out possible sampling and laboratory 
contaminants. Features that were present in the blanks and whose peak areas were less than 4 times higher 
in the samples were removed from the peak list. The measures and steps used in this study for quality 
control are shown in Figure S-2 (Supplementary Material). To improve the transparency and 
reproducibility of this study, the Nontargeted Analysis Study Reporting Tool was used for this study based 
on the article by Peter et al. (2021). An Excel file downloaded from the website of Benchmarking and 
Publications for Non-Targeted Analysis (https://nontargetedanalysis.org/SRT) is available in the 
Supplementary Data (NTA_SRT_wPlot-and-ScoreTable.xlsx). 

 

2.4 Instruments and methods 
 

A Thermo Scientific Q-OrbitrapMS model Q Exactive Plus Orbitrap (San Jose, CA, USA) was interfaced 
with a Thermo Scientific UHPLC system using a pneumatic assisted heated electrospray ion source. The 
analytical settings used were the same as those used in a previous study in another municipality along the 
Yamaska River (Eysseric et al., 2021). MS detection was performed in the positive ion mode using Top 
10 Data Dependent Acquisition (DDA). A DDA cycle entailed one MS1 survey scan (m/z 100-1000) 
acquired at a full width at half maximum resolution (RFWHM) of 35 000 and precursors ions meeting user 
defined criteria for monoisotopic precursor intensity (dynamic acquisition of MS2 based Top 10 most 
intense ions with a 2×105 AGC target). The frequency of acquisition was 

 10 Hz. Precursor ions were isolated using the quadrupole (2 Da isolation width) and activated by higher-
energy collision dissociation using stepped normalized energy (25, 35 and 45 units) and fragment ions 
were detected in the Orbitrap at RFWHM=17 500. RFWHM parameters were selected to maximize the 
frequency of acquisition. With a Top10 DDA method and short chromatographic peak widths (10-20 s), 
high frequency acquisition is crucial. Dynamic exclusion was set to auto to filter out background signal, 
noise, and instrument contamination.  

Instrument calibration was performed prior to all analyses and mass accuracy was notably below 1 ppm 
using the Thermo Pierce calibration solution and the automated instrument protocol. Source parameters 
were the following: capillary temperature was 300 °C; sheath gas was 50; auxiliary gas was 20; spray 
voltage was 4000 V. The liquid chromatographic column was a Waters Acquity UPLC HSS T3 (2.1 × 50 
mm, 1.8 μm) and the mobile phase was composed of water with 0.1% (v/v) formic acid (solvent A) and 
MeOH-ACN (3:2, v/v) with 0.1% (v/v) formic acid (solvent B). The gradient elution program, according 
to volume percent of solvent B in the mobile phase, was the following: 0 min, 2%; 17 min, 100%; 21 min, 
100%; 21.01 min, 2%; 25 min, 2%. Total run time was 25 min. Mobile phase flow rate was 350 μL min-

1 throughout the run and the injection volume was 2 μL. The instrumental parameters for the LC-MS 
acquisition in this study can be seen in Figure S-2 (Supplementary Material).  

 

https://nontargetedanalysis.org/SRT


2.5 Software parameters 
 

The identification was realized with a multi-tool approach recently developed using two in-silico high-
resolution tandem mass spectrometry databases, MetFrag and the Similar Partition Algorithm (SPS) along 
with the Global natural products social networking (GNPS) (Eysseric et al., 2021). Settings for each of 
the tools are shown in the Supplementary Material as well as in Figure S-2 which summarizes the full 
workflow used for data treatment. The R (version 4.1.1) package CluMSID (Clustering of MS2 Spectra 
for Metabolite Identification) version 1.6.0 was used to generate distance matrixes for data analysis along 
with dendrograms, clusters and other figures for data visualization (Depke et al., 2019). The R script 
containing the parameters for the figures is available in the Supplementary Material. CluMSID is 
complementary to GNPS since it operates offline and it builds a data matrix that allows to see the 
similarity of one spectrum with all the other ones unlike GNPS which is an online platform that only 
shows the degree of similarity between compounds that equals or exceeds the cosine score threshold. 
Throughout the text the term "clusters" will be used to refer to results associated to ClumSID and 
"molecular networks" to results obtained from GNPS. 

 

2.6 Levels of confidence 
 

Annotations carry different level of confidence in the identification. They were given based on 
Schymanski previous work on the matter (Schymanski et al., 2014). All structures in this study had a 
maximal deviation of 5 ppm for mass accuracy. For MetFrag and GNPS, a minimum of 4 matched peaks 
with the libraries was required to generate an identification. A score (the quality of the MS2 match based 
on the difference between the reference and experimental spectra) of 70 was needed for SPS, a cosine 
score (a scalar product of two spectra represented as vectors where 1 is a complete similarity) of 0.7 was 
needed for GNPS and a score of 5 was needed for MetFrag. All spectra matches were manually inspected 
to reduce the number of false positives. Furthermore, the isotopic pattern was used to generate molecular 
formulas with GenForm on patRoon which was part of the score calculation performed by the patRoon 
tool. The criteria for identification can be seen in Figure S-2. 

The "confirmed structure" level of confidence was given to compounds that were confirmed with 
reference standards. The "probable structure" level was given to compounds that either had an 
unambiguous match with an MS2 library and/or enough diagnostic evidence such as experimental context, 
diagnostic MS2 fragment ions. The third level, “tentative candidate", was given when there was a strong 
candidate structure either through a library match or diagnostic evidence for a compound, but not enough 
to unambiguously match a structure to a feature. This was seen when multiple library matches for a single 
feature had close scores.  

All matches in the probable structure and tentative candidate levels of confidence had to carry 
environmental relevance or be likely to be found in the samples. For example, a pharmaceutical compound 
like rofecoxib that was withdrawn over 15 years ago would not be selected in either category despite a 
good library match. Similarly, a match for a compound like anthracene that would be unlikely to show 
affinity for the positive mode of electrospray ionization and that would have a drastically different 
chromatographic behavior would be filtered out.  

 

3. Results 
 

A total of 438 compounds in the 6 sampling sites along the Yamaska river were detected. Of those, 53 
carry a confirmed structure level of confidence (Table 1), 258 carried a probable structure level of 

https://bioconductor.org/packages/devel/bioc/vignettes/CluMSID/inst/doc/CluMSID_tutorial.html


confidence and 127 were tentative candidates. All compounds with their level of confidence, 
monoisotopic mass, super class, class, and their frequency of detection per sampling site can be seen in 
the Supplementary Data (IdentifiedCompounds.xlsx). 

The chemicals were classified into five superclasses: consumer product additives (CPAs), illicit drugs, 
natural products, pesticides, and pharmaceuticals, based on the metadata in their PubChem and US-EPA 
Comptox Chemistry Dashboard profiles. CPAs were divided into cosmetics, food additives, polymer 
additives and surfactants. Natural products were divided into animal metabolites, plant metabolites, and 
toxins. Pesticides were subdivided into more specific classes: herbicides, insecticides, fungicides, and 
plant growth regulators. Pharmaceutical compounds were subdivided according to their Anatomical 
Therapeutic Chemical (ATC) Classification code (World Health Organization, 2021). Temperature, 
dissolved oxygen, conductivity and pH were also taken as water characteristics at each point (Table S-1, 
Supplementary Material). 

 
Figure 1. Total compounds tentatively identified and confirmed by superclass and class in all sampling 
points 

3.1. Consumer Product Additives 

Consumer product additives (CPAs) were the most numerous of the superclasses with 273 tentative 
identifications and 27 confirmed structures (Figure 1). CPA contamination was generalized to all points 



ranging from 186 compounds tentatively identified or confirmed downstream of Cowansville to 244 
downstream of Farnham (Figure 2).  

Table 1. List of compounds confirmed with reference standards. 

Compound name Superclass, class 
2,2,4-Trimethyl-1,2-dihydroquinoline (TMQ) CPA, Polymer additive 
2,2,6,6-Tetramethyl- 4-piperidinol CPA, Polymer additive 
Acetaminophen Pharmaceutical, Nervous system 
Acetyltributyl citrate CPA, Polymer additive 
Aliskiren Pharmaceutical, Cardiovascular system 
Atrazine Pesticide, Herbicide 
Benzotriazole-1H CPA, Polymer additive 
Benzotriazole-5-methyl-1H CPA, Polymer additive 
Benzoylecgonine Illicit drugs, Metabolite 
Caffeine Pharmaceutical, Nervous system 
Carbamazepine Pharmaceutical, Nervous system 
Citalopram Pharmaceutical, Nervous system 
Desethylatrazine Pesticide, Herbicide 
Diethyltoluamide CPA, Cosmetic 
Diltiazem Pharmaceutical, Cardiovascular system  
Dimethenamid Pesticide, Herbicide 
Diphenhydramine Pharmaceutical, Respiratory system 
Diphenylguanidine CPA, Polymer additive 
Ditolylguanidine CPA, Polymer additive 
Erucamide CPA, Polymer additive 
Fexofenadine Pharmaceutical, Respiratory system 
Gliclazide Pharmaceutical, Alimentary tract and metabolism 
Irbesartan Pharmaceutical, Cardiovascular system 
Ketamine Pharmaceutical, Nervous system  
Lauramidopropyl betaine CPA, Cosmetic 
Lauryldiethanolamide CPA, Cosmetic 
Lauryldiethanolamine CPA, Cosmetic 
Losartan Pharmaceutical, Cardiovascular system,  
MDMA Illicit drugs, Amphetamine 
Metolachlor Pesticide, Herbicide 
Metribuzin Pesticide, Herbicide 
O-Desmethylvenlafaxine Pharmaceutical, Nervous system 
OPEO-3 to OPEO-15 CPA, Surfactant 
Oxazepam Pharmaceutical, Nervous system 
Oxybenzone CPA, Cosmetic 
Paraxanthine (caffeine metabolite) Pharmaceutical, Nervous system  
Rosuvastatin Pharmaceutical, Cardiovascular system,  
Sitagliptin Pharmaceutical, Alimentary tract and metabolism 
Trimethoprim Pharmaceutical, Antiinfective for systemic use 
Tris(2-butoxyethyl) phosphate CPA, Polymer additive  
Valsartan Pharmaceutical, Cardiovascular system 

 



 

Table 2. List of networks or clusters of chemicals that were tentatively identified and confirmed with 
reference standards per class and superclass. 

Cluster family 
Number of 
members 
identified 

Superclass 
(class) 

Molecular 
network or cluster 

Fatty amides 4 CPA 
(polymer additives) 

Figure S-3 

Polyethylene glycols 24 CPA 
(cosmetics) 

Figure S-4 

Betaines and alkylamidopropyl 
dimethylamines 

11 CPA 
(cosmetics) 

Figure 3 

Diethanolamines and 
diethanolamides 

6 CPA 
(cosmetics) 

Figure S-5 

Polyoxyethylene alkyl ethers and 
esters 

64 CPA 
(surfactants) 

Figure S-6, Figure 
S-7 and Table S-2 

Octylphenol ethoxylates 16 CPA 
(surfactants) 

Figure S-8 

Alkylphenols ethoxylates acids 21 CPA 
(surfactants) 

Figure S-9 

Metolachlor transformation 
products 

3 Pesticides 
(herbicides) 

Figure S-11 

Beta-blockers and transformation 
products 

4 Pharmaceuticals 
(cardiovascular system) 

Figure S-13 and 
Figure S-14 

Irbesartan and transformation 
products 

5 Pharmaceuticals 
(cardiovascular system) 

Figure S-14 and 
Figure S-16 

Diltiazem and transformation 
products 

4 Pharmaceuticals 
(cardiovascular system) 

Figure S-14 and 
Figure S-17 

Gliclazide and transformation 
products 

2 Pharmaceuticals 
(Alimentary tract and 

metabolism) 

Figure S- 18 

CPA: Consumer product additive. 



 
Figure 2. Frequency of detection of confirmed and tentatively identified compounds per station by 
superclass and class 

  

Food additives included among others the emulsifiers sucrose palmitate and polysorbate 40, 60, and 80, 
along with the Maillard reaction product 5-hydroxymethylfurfural as tentative candidates.  

Fifty-four polymer additives were identified or confirmed with reference standards (19 tentative 
candidates, 27 probable structures, 8 confirmed structures). The class included plasticizers, flame 
retardants, lubricants, heat and light stabilizers, antioxidants, antiozonants and vulcanization accelerators 
among others; several of these chemicals are high production volume (HPV) chemicals in Canada per the 
CompTox Chemistry Dashboard of the US EPA. The vulcanization accelerators diphenylguanidine and 
ditolylguanidine, that were detected in all points, have been found to originate from tire wear particle 
leachates (Sieira et al., 2020; Zahn et al., 2019). Another HPV compound related to tire wear was the 
antioxidant 2,2,4-trimethyl-1,2-dihydroquinoline, also known as TMQ. The transformation product 
2,2,6,6-tetramethyl-4-piperidinol, resulting form the hydrolysis of the HPV light stabilizer 4-hydroxy-
2,2,6,6-tetramethylpiperidine-1-ethanol, was also tentatively identified. Erucamide, an HPV fatty amide 
used as lubricant in polymers, was found in a molecular network which allowed to identify 3 other 
congeners (Figure S-3, Supplementary Material). Five transformation products of the flame retardant 
tris(2-butoxyethyl)phosphate (TBEP) as well as the parent compound itself were detected in all points. 
The TPs were manually searched after their structures were elucidated in a previous bottom-up study 



(Eysseric et al., 2022). The TPs had been generated in laboratory and tentatively identified after a 
photolysis experiment of TBEP after which their environmental occurrence was confirmed in this current 
NTS.  

Sixty-seven cosmetics were either tentatively identified or confirmed with reference standards. Whereas 
food additives and polymer additives were composed of diverse compounds and their TPs, the cosmetics 
are mostly composed of families of congeners. These compounds shared highly similar MS2 spectra and 
were grouped in clusters and in networks which allowed to identify them in batch. In the first case, twenty-
four polyethylene glycols (PEG) congeners were grouped in three separate molecular networks (Figure 
S-4, Supplementary Material). PEGs have a very wide variety of uses in cosmetics such as solvents in 
cologne, hair fixatives, and nails lacquers or as emulsifiers in shampoos and conditioners (Rieger, 2009). 
Congeners from PEG-3 to PEG-28 were detected in all points. Five polypropylene glycol (PPG) 
congeners from pentapropylene glycol to nonapropylene glycol were also identified with a level of 
confidence of 2a. Additionally, nine congeners of alkylamidopropyl betaines and two alkylamidopropyl 
dimethylamines (by-products from the manufacturing of betaines) were clustered in a molecular network 
(Figure 3). The compound lauramidopropyl betaine was confirmed with a reference standard (Table 1); 
the other compounds in the network are probable identifications considering the high degree of similarity 
they shared with it in terms of retention time and MS2 spectra. These compounds are used in shampoos, 
conditioners, skin moisturizers, and skin cleansers. To the knowledge of the authors, only 
lauramidopropyl betaine and myristamidopropyl betaine have been reported in surface and waste waters 
before (Beckers et al., 2020; Peng et al., 2018) which means that we report 9 new betaine related 
compounds in this paper. Another network of diethanolamines and diethanolamides, also used in 
shampoos as foam boosters was also found (Figure S-5, Supplementary Material). Once again to the 
knowledge of the authors, only lauryldiethanolamide has been reported in waste and surface waters in the 
literature (Beckers et al., 2020; Peng et al., 2018). 

 
Figure 3. Molecular network of cosmetics betaines and betaine related compounds. In grey are the 
unannotated precursors that are interference isobars of m/z 313.321 that were selected to the quadrupole 
at the same time. The structure of lauramidopropyl betaine, which was confirmed with a reference 
standard, is shown. 



 

Surfactants represented by far the biggest class with 140 compounds that were either tentatively identified 
or confirmed with reference standards. The occurrence of these species was observed in nearly all 
sampling points (Figure 2). These surfactants are part of multiple very large families of PEG based 
congeners. A molecular network (Figure S-6, Figure S-7, Supplementary Material) and a cluster (Table 
S-2, Supplementary Material) gathered what amounted to 64 PEG alkyl ethers and esters  allowing the 
tentative identification of 6 subgroups of alkyl PEG ethers with aliphatic chains length of 10, 11, 12, 13, 
14, and 15 carbon atoms and 5 subgroups of alkyl esters with aliphatic chains length of 11, 12, 13, 14, 
and 15 carbon atoms. PEG alkyl ethers and esters are widely used as lubricants in textile processing, as 
emulsifiers in metal working fluids and as solvent cleaners (Pfaendner, 2019). This particular network 
really highlights the power of the molecular networking tool to identify congeners and especially 
congeners of PEG which share highly similar MS2 spectra. A widespread contamination of alkylphenol 
ethoxylates, non-ionic surfactants that were identified in the Yamaska river in a recent work (Eysseric et 
al., 2021) was again identified. Octylphenol ethoxylates (OPEOs) congeners ranging from OPEO-3 to 
OPEO-19 were found in a molecular network (Figure S-8, Supplementary Material) and confirmed with 
reference standards. Additionally, 27 carboxylic acid TPs of OPEOs and closely related nonylphenol 
ethoxylates (NPEO) in another molecular network (Figure S-9, Supplementary Material) were tentatively 
identified. OPEOs and NPEOs have been known to biodegrade into carboxylic acid TPs under aerobic 
conditions (Komori et al., 2006). These compounds showed an inversed linear relationship between the 
number of ethylene oxide units and retention time which further strengthen the level of confidence in their 
identification (Figure S-10, Supplementary Material). Transformation experiments under controlled 
laboratory conditions as well as molecular modelling are necessary to elucidate the mechanisms leading 
to the formation of these TPs. 

 

3.2. Illicit drugs, Pesticides and Natural Products 

Of the 29 pesticides that were either tentatively identified or confirmed, herbicides were the most 
numerous with multiple common compounds such as atrazine (confirmed) and two of its metabolites 
desethylatrazine (confirmed) and 2-hydroxyatrazine. Metolachlor was confirmed with a reference 
standard while its TPs, metolachlor-ESA, metolachlor-OA, and metolachlor morpholinone, were 
annotated with an empirical library. Two additional TPs of metolachlor were tentatively identified, 
metolachlor_TP250 and metolachlor_TP266, because they were grouped in a molecular network with 
metolachlor-OA (Figure S-11, Supplementary Material). The number of pesticides identified went up 
sharply at the stations upstream and downstream of Saint-Hyacinthe (Figure 2). This was to be expected 
considering the intense agricultural activity around the river upstream both these stations that can be 
appreciated with the satellite images of the sampling points (Figure S-1, Supplementary Material). 

The amphetamine MDMA and the main metabolite of cocaine, benzoylecgonine, were confirmed. The 
natural products tentatively identified included 6 toxins (Figure 1). Among them are the cyanotoxin 
lyngbiatoxin-C and the couple of mycotoxins zearalenone and zearalenol that are tentative candidates. 
Lingbyatoxin 1 and lingbyatoxin-6 were observed previously in benthic Lyngbya wollei algae samples 
collected in the St. Lawrence River (Lajeunesse et al., 2012). Zearalenone could be a source of concern 
because of its estrogenic activity (Rogowska et al., 2019). The number of natural products detected stayed 
relatively similar across all points (Figure 2). 

 

3.3. Pharmaceuticals 

A total of 116 pharmaceuticals subdivided into 13 classes (Figure 1) were either tentatively identified or 
confirmed. The fluctuation in the detections between upstream and downstream the wastewater treatment 
plants of each sampling site can be appreciated in Figure 2. The effect was most marked in Cowansville, 



which is to be expected since it is the first sizeable city in this stretch of the river with a population of 
over 11 thousand inhabitants (Statistics Canada, 2017) and a regional hospital of 96 beds (Fondation de 
L'Hôpital Brome-Missisquoi-Perkins, 2022). Since all the following points are downstream the city of 
Cowansville, more pharmaceuticals were detected. Still the discrepancy between upstream and 
downstream could be observed but in a lesser manner. 

The largest class of pharmaceuticals was the drugs for the treatment of the cardiovascular system with 33 
compounds (Figure 1). Several transformation products that were never reported before to the knowledge 
of the authors were tentatively identified with the help of molecular networking and clustering tools 
(MNC). The transformation product metoprolol_TP282 results from hydroxylation followed by oxidation 
(Figure S-12, Supplementary Material) of metoprolol, a beta-blocker.  Metoprolol_TP282 was located in 
a molecular network with 3 other beta-blockers including metoprolol which made its identification 
possible (Figure S-13, Supplementary Material) as well as next to metoprolol in the dendrogram of all 
precursors from downstream Cowansville, where it was detected (Figure S-14, Supplementary Material). 
Furthermore, one previously unknown TP of irbesartan was tentatively identified: irbesartan_TP445 is 
the result of hydroxylation at the end of the aliphatic chain (Figure S-15, Supplementary Material). Three 
other TPs that were found in the same network, irbesartan_TP443, the result of oxidation of the newly 
formed alcohol in irbesartan_TP445, irbesartan_TP459 the acid resulting from another hydroxylation on 
the same carbon, and irbesartan_TP387, that results from the loss of a propyl group (Figure S-15, 
Supplementary Material), had been tentatively identified in the past (Boix et al., 2016). These compounds 
were all grouped with MNC tools which made their identification possible despite them being absent in 
databases and irbesartan_TP445 being previously unknown (Figure S-16). Irbesartan is a widely 
consumed pharmaceutical partly removed during wastewater treatment (Boix et al., 2016). Finally, 
another molecular network of diltiazem and three of its TPs: desmethyldiltiazem, deacetyldiltiazem, and 
desmethyldeacetyldiltizaem (Figure S-17, Supplementary Material) were found. These TPs had been 
tentatively identified in a previous study in the Yamaska River (Eysseric et al., 2021).  

The TP hydroxyatorvastatin-lactone was tentatively identified. This compound was also identified in the 
bottom-up study realized by Eysseric et al. (2022)  as the parent compound atorvastatin had also been 
submitted to photolysis in laboratory settings. Atorvastatin, despite its common use, was not detected in 
any sample. This finding illustrates the importance of bottom-up studies as it would not have been 
identified with current top-down tools. Rosuvastatin, another statin pharmaceutical, along with the 
transformation product rosuvastatin lactone were tentatively identified. Only rosuvastatin was initially 
annotated following a MS2 library match. It is upon looking at the dendrogram (Figure S-14, 
Supplementary Material) and the distance matrix for downstream Cowansville, where both features were 
detected, that a mass corresponding to the net loss of H2O in the formula was observed. A manual 
inspection of the MS2 spectrum of the compound in addition to contextual evidence from past studies (Lee 
et al., 2009; Machado et al., 2015; Sulaiman et al., 2015) allowed assigning a probable structure.  

The second largest class was the drugs classified as affecting the nervous system with 27 compounds (8 
confirmed structures, 14 probable structures, and 4 tentative candidates). It includes several contaminants 
commonly found contaminants in surface waters such as acetaminophen, citalopram, oxazepam, 
carbamazepine, and caffeine, all which were confirmed. The TPs O-desmethylvenlafaxine and 
paraxanthine were also confirmed along with ketamine which also has recreative use. Gamma-
aminobutyric acid (GABA), lidocaine and its TP N-desethyllidocaine, lamotrigine, methocarbamol, and 
three carbamazepine TPs were also tentatively identified as probable structures. 

The 18 anti-infectives for systemic use that were tentatively identified and confirmed (Figure 1) were 
from five different antibiotic classes: aminoglycosides, cephalosporins, lincosamides, macrolides, and 
sulfonamides. Trimethoprim was confirmed with a reference standard, seven compounds were probable 
structures, and ten other compounds were tentative candidates. This can be concerning when considering 
that the distribution of antibiotic resistance genes is related to riverine inflows of antibiotics (Liang et al., 



2020). The list of all compounds confirmed and tentatively identified is shown in the Supplementary Data 
(IdentifiedCompounds.xlsx).  

The alimentary tract and metabolism drug gliclazide which is used in the treatment of diabetes was 
confirmed with a reference standard. It was grouped in a small cluster of two compounds with a 
transformation product resulting from the formation of an acid (Figure S-18, Supplementary Material). 
To the authors' knowledge, this TP was previously unknown and unreported in the literature. 

 

4. Discussion 
 

The networking and clustering tools proved to be highly efficient when it came to identifying unannotated 
or even completely unknown TPs. An important caveat was that the parent compound had to be detected 
as well as linked in the network or cluster to realize the identification of the TPs. This was seen with 
irbesartan, diltiazem, rosuvastatin, gliclazide, metoprolol, metolachlor and citalopram where 16 TPs were 
identified among these compounds including several unknown ones, as can be seen in Table 2. However, 
in the cases where there was a single TP while the parent compound was not detected, networking and 
clustering tools could not assist toward the identification. This is because the TPs could not be connected 
to a similar compound. As such, the single TPs were identified either through an annotation from a high-
resolution tandem mass spectra database, like celecoxib carboxylic acid, benzoylecgonine and 
clindamycin sulfoxide, or because they were previously identified in a bottom-up study realized by the 
authors, like hydroxy-atorvastatin lactone and the five transformation products of TBEP. 

Furthermore, when the structure of the TPs was similar to the respective parent compound, they could be 
efficiently linked in a network or a cluster. In the cases where the transformation products were the result 
of reactions on the parent compound such as hydroxylation (irbesartan, metoprolol), oxidation 
(metoprolol, irbesartan, alkylphenol ehthoxylates acids) or dealkylation (irbesartan, diltiazem, 
citalopram), they could still be grouped by the networking and clustering tools. A mass bias affecting the 
formation of clusters and networks was also observed. Congeners over 400 Da containing 
polyoxyethylene units were generally in molecular networks. However, in instances where the molecular 
weight of a compound and its transformation product were lower than around 400 Da, they were less 
likely to be grouped together. For example, neither were atrazine and desethylatrazine nor caffeine and 
paraxanthine clustered despite being closely related structurally. Indeed, precursors with higher m/z were 
more likely to be part of a molecular network than ones with a lower m/z value as shown in Figure 4 where 
47% of the precursors with a m/z equal and under 400 were in a network whereas 63% of the compounds 
over 400 m/z were in a molecular network. This could be explained by the fact that, generally, larger 
compounds can be fragmented into more product ions than smaller compounds thus they can be more 
easily grouped together by the algorithms that had a minimum of matching product ions of 4. There is 
also a high number of polyoxylethylene homologues in the samples which are at large over 400 Da and 
may skew the trend. Furthermore, we hypothesize that higher collision energies (stepped energy of 25, 35 
and 45 units were used in the present workflow) could generate more fragments and thus reduce this 
threshold. However, such hypothesis was not tested since it was outside the scope of this study. 



 
Figure 4. Repartition of the number of precursors in a network per precursor m/z on the total number of 
precursors across all sampling points. The background signal, noise and blank features were removed and 
are not presented in this figure. 

Networking and clustering tools showed powerful capacities when it came to uncovering the structures 
of oligomers such as alkylphenol ethoxylates, polyoxyethylenes, polyoxyethylene alkyl ethers, and 
polyoxyethylene alkyl esters. The tools proved to be particularly useful since only a portion of the 
compounds in the networks were registered in a chemical repository. This was especially the case for 
polyoxyethylene alkyl ethers and esters that for a significant part did not have an entry on PubChem nor 
Chemspider. This means that even in silico tools such as MetFrag or SPS (both used in this study) could 
not have supplied an identification since they use these large chemical repositories as a source. A total of 
125 compounds containing multiple polyoxyethylene units were tentatively identified or confirmed in the 
multiple networks and clusters that can be seen in Table 2. There was little to no ambiguity when it came 
to the assessment of a structure for these compounds because of the numerous product ions from the high 
resolution MS2 spectra, network information, and other diagnostical evidence such as the linear retention 
time pattern in a family of congener seen in Figure S-10. All the polyoxyethylene congeners can be seen 
in an Excel File in the Supplementary Data (IdentifiedCompounds.xlsx) 

Still, a much higher number of precursors, which includes the annotated ones, shared polyoxyethylene 
units and thus highly similar MS2 spectra. The dendrogram and heatmap of all the features detected in 
downstream Farnham in Figure S-19 (Supplementary Material) illustrates the number of precursors 
sharing multiple product ions. Over 30% of all precursors (1240 on 4023 total unique precursor ions) had 
at least two product ions originating from polyoxyethylene units while over 40% (1717 on 4023 total 
unique precursor ions) had at least one. The product ions shared by most of these compounds 
corresponded to the protonated molecules of two (89.060 ± 1mDa), three (133.086 ± 1mDa), four 
(177.112 ± 1mDa), five (177.112 ± 1mDa), and six (265.164 ± 1mDa) polyoxyethylene units. It should 
be noted, however, that several compounds had more than one adduct, notably in the form of protonated 
molecules and ammonium adducts as can be seen in Figure S-4, Figure S-7, Table S-2, and Figure S-8 
(Supplementary Material). Componentization performed by the CAMERA package and GNPS showed 
76 instances of overlapping ammonium adducts in the ethylene oxide cluster. As such, the total number 
containing polyoxyethylene units is between 1641 and 1717. 



Isobaric interferences proved to negatively impact the performance of MNC tools. There were several 
instances in which these interferences were observed. In some cases, a coeluting compound or a 
background contamination whose precursor was within the quadrupole window selection range (2 Da) 
was selected for a MS2 experiment. Isobaric precursors were observed in the molecular networks of 
betaines (Figure 3), alkyldiethanolamines and alkyldiethanolamides (Figure S-5, Supplementary 
Material), and metolachlor (Figure S-11, Supplementary Material). While these were cases of false 
positives relatively simple to assess, there might also have been cases of false negatives where the spectral 
interference caused precursors that should have been linked to be separated which can be much more 
challenging to address. A better chromatographic separation could be a solution to minimize the impact 
of coeluting species which could be achieved with a longer column, e.g., 150 mm. Matrix effects could 
also prove to be a problem if severe ionization suppression were to happen. 

Regarding the individual performances of the MNC tool, GNPS offered a simpler user experience with 
the website interface and allowed to treat the networks with the Cytoscape software. However, it required 
four different interfaces. CluMSID required a steeper learning curve and longer calculation time while 
only allowing to analyze one file at a time which is a very significant drawback when working on large 
sequences. On the other hand, it operated offline and as such did not require an internet connection. The 
main inconvenience of both tools was how time-consuming they are and cannot be applied to routine 
analysis as of now. 

5. Conclusion 
 

A “top-down” workflow consisting of a non-targeted water analysis of a local river in Southern Canada 
allowed to identify 126 tentative candidates, 258 probable structures and confirm 53 compounds with 
reference standards for a total of 438 compounds. While this method is limited by a Top 10 DDA 
acquisition technique that detects only the 10 most abundant with a frequency of acquisition of 10 Hz, it 
does not necessarily detect the most toxic compounds in the samples. No single method can detect all 
relevant compounds in a sample, but the proposed method is a useful tool to improve current knowledge 
about the occurrence of nontargeted contaminants. By using different ion sources such as atmospheric 
pressure ionization or dielectric barrier discharge ionization (Lara-Ortega et al., 2018) as well as 
hydrophilic interaction liquid chromatography, the analytical capabilities of the method can be further 
expanded. Thus, the obtained data, combined to toxicity prediction based on quantitative structure-activity 
relationships such as Ecosar (U.S. Environmental Protection Agency, 2019) or deep learning (Tang et al., 
2018) can be employed to sort out the most toxic compounds.  

The use of molecular networking and clustering tools permitted to group together similar compounds and 
thus made possible the structural elucidation of multiple previously unknown TPs of pharmaceuticals and 
pesticides. The tools also helped to identify 176 congeners of compounds units originating from complex 
chemical mixtures found in consumer product additives where only 47 were annotated with the empirical 
and in silico MS2 matching tools. A total of 37 alkylphenol ethoxylates and their carboxylic acid 
transformation products, known for their estrogenicity, were thus identified all at once. A very powerful 
use of the MNC was showcased while allowing to tentatively identify multiple congeners of 
polyoxyethylene ethers and esters that in multiple instances did not figure on PubChem. Expanding the 
reach of identification further is of great value in NTS assays as the number of commercially available 
compounds continues to increase. Similarly, facilitating the structural elucidation of unknown 
transformation products directly in environmental samples without having to rely on “bottom-up” studies 
in controlled laboratory settings helps to alleviate the pressure on the scientific community and even speed 
up the identification of unknown contaminants. Still, these studies remain crucial as there were numerous 
instances where MNC tools did not group transformation products and parent compounds despite them 
all being present. In those cases, MS2 data resulting from bottom-up studies, like in the case of 
hydroxylated atorvastatin lactone, and MS2 databases had to be relied upon for tentative identifications.   



Since MNC tools are used at the end of a non-targeted analysis workflow, they offer impressive 
possibilities with regards to data mining and retrospective analysis of data-dependent experiments while 
working on all file formats. While time investment and level of specialization required to use these tools 
can be a barrier for now in routine analysis, they showed how powerful they can be in multiple 
applications and should be implemented in “top-down” workflows and non-targeted analysis for more 
comprehensive contaminant monitoring. 
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